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ABSTRACT

Cardio-vascular diseases is a major cause of deaths world-
wide. Early diagnosis is quite often associated with more
efficient treatment leading to a significant decrease of the
mortality rate.

In this paper, we present tools developed to procces dif-
ferent cardiac modalities over the past years with aim to
faciliate/automate computer aided diagnosis. In particular
we present algorithms and advanced techniques for the seg-
mentation of the left ventrile for magentic resonance and
echocardiographic imaging. Furthermore, to account for
user interaction, we extent our method towards user-aided
boundary delineation where the user has the ability to cor-
rect local discrepancies of automated results.

1. INTRODUCTION

Computer aided diagnosis is a growing application domain
of medical image analysis. Segmentation of cardiac struc-
tures is used to assist physicians in various states of treat-
ment of cardiovascular diseases.

Identifying the heart chambers, the endocardiumand the
epicardium is a powerful diagnostic tool. In particular the
detection, segmentation and tracking of the left ventricle is
of great importance because it pumps oxygenated blood out
to distant tissue in the entire body. Furthermore, measur-
ing the ventricular blood volume, wall mass, wall motion
and the wall thickening properties over various stages of the
cardiac cycle are components with strong diagnostic power.

Segmentation is an ill-posed problem. Pose and reflec-
tion properties of the object, noise from the acquisition de-
vices are some of the factors that can interfere with the
process. Medical imaging is a bounded area regarding the
above conditions. The clinical user can control the acqui-
sition process while sensor perturbations can be considered
known. Last, but not least, the physical entities to be recov-
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ered are constrained to follow known topology with certain
degree of variation.

In this paper we propose a level set framework for shape-
driven knowledge-based segmentation and user-aided bound-
ary delineation that is parameter free, implicit and intrinsic.
Prior shape knowledge is represented using a probabilistic
level set distance map and global shape consistency is in-
herited to the process through a similarity registration of the
evolving interface to the prior model. Visual evidence is in-
tegrated through a boundary and a region-based segmenta-
tion module while internal smoothness constraints are also
imposed. Last, but not least user interaction is transformed
to propagation constraints that force the solution to respect
the user preferences. Related segmentation techniques with
our approach can be found in [1].

The reminder of this paper is organized as follows; In
section 2 we introduce the application context and the level
set method. Prior shape knowledge is introduced in section
3 while in section 4 we present a technique to account for
user-interaction. Discussion is part of section 5.

2. LEVEL SET DATA-DRIVEN SEGMENTATION

The segmentation of the left ventricle can be viewed as a bi-
modal frame partition problem. One would like to separate
the endocardium from the background. We address this par-
tition by considering a curve propagation approach. Visual
(boundary and regional) terms, prior shape knowledge and
internal constraints are used to derive an automated solution
for detection and segmentation of the left ventricle.

The level set method [2, 3] is an emerging technique for
tracking moving interfaces. To this end, based on a motion
equation that dictates the propagation of a closed structure,
one can construct a structure of a higher dimension [φ] and
define a correspondingflow such that its zero level set yields
always to the position of the input structure. A step further
is to consider the definition of the problem and the objec-
tive function [4] directly on the space of level set represen-
tations.



Towards this end, one can define the approximations of
Dirac and Heaviside [4] distributions;
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and use them to introduce an image partition objective func-
tion.

Boundary attraction as well region-consistency terms can
be defined based on an evolving function φ. The geodesic
active contour [5, 6] can be used for example to perform
boundary extraction.

EB(φ) =
∫∫

Ω
δα(φ)b(|∇I|)|∇φ|dΩ︸ ︷︷ ︸

boundary module

where b : R+ → [0, 1] is a monotonically decreasing func-
tion. The lowest potential of this functional corresponds to
a minimal length geodesic curve attracted by the boundaries
of the structure of interest.

Regional/global information can improve performance
of boundary-based flows [7] that suffer of being sensitive to
the initial conditions. The central idea behind this module is
to use the evolving interface to define an image partition that
is optimal with respect to some grouping criterion. Within
level set representations such partition is natural according
to the sign of the embedding function. The Heaviside func-
tion can be considered to define such partition;

ER(φ) =
∫∫

Ω
Hα(φ)rO(I)dΩ︸ ︷︷ ︸

endocardium

+
∫∫

Ω
(1 − Hα(φ))rB(I)dΩ︸ ︷︷ ︸

background

according to some region descriptors functions rO : R+ →
[0, 1], rB : R+ → [0, 1] that are monotonically decreasing
functions. Such descriptors measure the quality of match-
ing between the observed image and the expected regional
properties of the structure of interest and the background.

Integration of the boundary and the region-driven term
can be considered to perform segmentation [7], namely the
geodesic active region model. In the absence of noise, oc-
clusions and corrupted visual information, such method can
deal with local deformations. On the other hand, it cannot
account for prior shape knowledge, deal with noisy, cor-
rupted and occluded data.

3. PRIOR SHAPE KNOWLEDGE

Shape-driven constraints were considered within the propa-
gation of curves in various ways. To this end, one has first
to select an appropriate shape representation when introduc-
ing such constraints. Moreover, the extraction of an optimal

set of parameters able to describe these constraints is to be
done given a set of training examples. We consider a pixel-
wise stochastic level set representation [8] to encode prior
knowledge;

pM,{x,y}(φ) =
1√

2πσM (x, y)
e
− (φ−φM (x,y))2

2σ2
M

(x,y)

defined in the pixel level that consists of two unknown vari-
ables;

• The shape image φM ,

• The local degrees of variability image σM .

Distance transforms are used as embedding function in the
definition of φM . Such prior model also consists of a vari-
ability image that describes the confidence of the prior model.
In areas where important local deformations are plausible
high variability estimates are present. Variational principles
according to the maximum likelihood criterion between the
model and a training set are used to determine the function
ΦM and the variability estimates σM [8]. This model can
be used within the segmentation process to enforce global
shape consistency.

Let φ be a level set representation to which we would
like to introduce a global similarity invariant shape con-
straint according to the model φM . We assume that φ is part
of the family of shapes that consists of all possible similarity
transformations of the model. Introducing such constraint
can be done by updating locally the evolving representation
to meet the model properties; optimal local match. Corre-
spondence is determined through a similarity registration.

Thus, given the current state φ, we assume the existence
of an ideal transformation A between the evolving repre-
sentation and the shape model. In order to better account
for the nature of the structure of interest, we assume that the
optimal registration corresponds to the maximum likelihood
between the representation and the model;

(x, y) → A(x, y)

maxx,y

{
pM,A(x,y) (sφ(x, y))

} ∀(x, y) : Hα(φ(x, y)) ≥ 0

where s is the scale factor of the registration model. Level
Set Representations with distance transforms as embedding
function are invariant to translation and rotation but not to
scale variations [9]. Their values are scaled accordingly.
Consequently scale appears as a multiplicative factor in the
matching process. Solving segmentation/registration now
is equivalent with finding a representation φ and a global
registration model A;

EM (φ, A) =
∫∫

Ω

Hα(φ)
[
log(σM (A)) +

(sφ − φM (A))2

2σ2
M (A)

]
This functional consists of two unknown variables; (i) a
level set representation that is optimal when it becomes a



similarity transformation of the prior model, (ii) a transfor-
mation (registration) between the evolving current represen-
tation and the model. This term is defined in a qualitative
manner; model parts with low variability are more signif-
icant than the ones that undergo important local deforma-
tions.

One can integrate this module with the previously de-
fined visual driven terms

E(φ, A) = β1 EB(φ) + β2ER(φ) + EM (φ, A)
where β1, β2 are blending parameters, leading to a data-
driven segmentation approach that privileges certain prior
knowledge on the structure of interest.

4. USER-INTERACTION

Segmentation techniques often require local corrections in
particular when the visual information does not support the
user-preferred solution. User interaction is a common tech-
nique to address this issue. One can consider the case of
ultrasonic images. The low signal-to-noise ratio can lead
to segmentation discrepancies. Correcting these results will
take significantly lesser time than the complete hand draw-
ing of the cardiac contours, which is the standard procedure.

We consider the following form of interaction: a single
control point that is used to correct local discrepancies. In
order to derive shape constraints within a level set frame-
work, we use linear or quadratic interpolation to converted
the user edits into closed structures (shapes).

Quadratic interpolation aims at finding the value of a
function at an unknown intermediate point given three data
points. That is equivalent with fitting a parabola to the three
data points ((xi−1, yi−1), (xi, yi), and (xi+1, yi+1))

y = Ax2 + Bx + C

where A, B, and C are unknowns to be recovered. The sim-
plest method to recover these parameters is using the de-
terminants. Then, the user would like to force the solution
to go through such a problematic segment. Within our ap-
proach, a core point (p̂) provided by the user and smooth-
ness constraints on the solution are used to correct such lo-
cal discrepancies.

One can consider improving the solution locally by re-
placing a small segment of the actual solution with the in-
teractive part. Therefore, given a point (p̂) the curve points
that lie within a distance d 1 are considered. The use of
distance maps as embedding function for the level set rep-
resentations, provide a straightforward manner to determine
these points2

Np̂ = {pi ∈ Ω : | φ(p)− d | < δ}
1This distance should be greater than the minimum distance between

the curve and the control point; d = D(p̂, ∂R(t)) + ε.
2The assumption that the control point lies on the interior of the

data-driven solution has been considered within this condition to recover
these points. On can easily modify the condition as follows Np̂ =

where δ ← 0. For convex shapes and control points that
lie on the object, it can be proved that N p̂ consists of two
points (for a reasonable small selection for d). Such as-
sumption does not hold for any shape. Therefore, more than
two points can satisfy the constraint. In order to introduce
the interactive segment, only two points of the curve will
be considered. We select the ones with maximum angular
separation at (p̂):

(pl, pr) : argmax{i,j} | pi − pj |
(pi, pj) ∈ Np̂ × Np̂

The next step is to perform a quadratic interpolation be-
tween (pl, pr, p̂) and determine the interactive segment. Within
the level set representations, the current position of the curve
is recovered from the zero-level set of the embedding func-
tion. The curve points are four-connected (zero-crossings
on the image plane), and using a simple connected compo-
nent rule, we can recover them in a clock-wise order;

∂R = (p0, ..., pr, ..., pl, ..., pN )

where p0 is an arbitrary selected point. Towards introduc-
ing the interactive segment, one can replace the segment be-
tween pl and pr with the one determined by the quadratic
interpolation between the control point p̂ and p l and pr;

∂UI = (p0, ..., pr, q1, ..., qM , pl, ..., pN )

One can embed such a shape in a level set function using
the Euclidean distance as embedding function;

φC(p) =

⎧⎨
⎩

0 , p ∈ ∂UI

+D(p, ∂UI) > 0 , p ∈ RUI

−D(p, ∂UI) < 0 , p ∈ [Ω −RUI ]

Such a representation encodes the user edits in a global fash-
ion using the existing solution in areas where user interac-
tion is absent where one should tolerate important devia-
tions from the constraint. We consider the distance between
the control point and the image plane as an indicator for the
importance of the constraint.

σC(p) = 1 + |p− p̂|, p ∈ Ω

Such a measure will be small for the area around the inter-
active segment while being significant for the segments that
are far from the user edits. The same principle can be used
to account for multiple, independent user edits.

The user-edits are taken into account when the evolving
level set representation becomes similar to the one derived
from the constraint. To this end, we consider the distance
between the constraint and the evolving representation φ.

E(φ) =
∫∫

Ω

Hα(φ) (φ− φC)2 dΩ

{pi ∈ Ω : | φ(p) + d | < δ} to deal with control points that lie on the
background.



Fig. 1. Visual-information and prior knowledge.

that is equivalent with seeking a curve that goes through
the user-defined seed points. This is done by minimizing
the distance between the evolving curve and the interactive
constraint.

During the model construction, we have considered that
the importance of the user-input is determined according to
the distance from the control points. It is natural to harder
enforce the constraint close to the user seeds while consider
the data to guide the segmentation process when there is not
input from the user. The distance between the constructed
prior and the control points of the constraint can be used to
implement such strategy;

EI(φ) =
∫∫

Ω

Hα(φ)
(φ− φC)2

σ2
C

dΩ

The user interaction is optimally considered when finding
the φ that corresponds to the lowest potential of the objec-
tive function. The calculus of variations within a gradient
descent method can be used to determine the optimal flow
that forces the evolving curve to respect the user-defined
constraints. One can integrate such a constraint with visual
terms and domain-specific knowledge.

5. DISCUSSION

In this paper we have proposed a shape-driven variational
framework for knowledge-based segmentation. Our approach
integrates domain specific knowledge, visual information
with shape constraints and user-specific knowledge.

Promising experimental results using cardiac [fig. (1,2)]
MRI and ultrasound were obtained. The 3D implementa-
tion of our approach is under investigation. Non-parametric
shape representations within the space of distance transform

Fig. 2. Visual-information and prior knowledge and user interac-
tion (crosses) (- left - before interaction, - right - after interaction).

is a step forward for our approach [10]. Changes of topol-
ogy is a strength of level set representations. Our approach
can detect single objects with complex topology but cannot
recover structures of different topology that are connected.
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