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Abstract. In this paper we present a new technique to extract layers
in a video sequence. To this end, we assume that the observed scene
is composed of several transparent layers, that their motion in the 2D
plane can be approximated with an affine model. The objective of our
approach is the estimation of these motion models as well as the estima-
tion of their support in the image domain. Our technique is based on an
iterative process that integrates robust motion estimation, MRF-based
formulation, combinatorial optimization and the use of visual as well as
motion features to recover the parameters of the motion models as well
as their support layers. Special handling of occlusions as well as adap-
tive techniques to detect new objects in the scene are also considered.
Promising results demonstrate the potentials of our approach.

1 Introduction

Motion perception is an important characteristic of biological vision used as
input in various tasks like to determine the focus of attention, etc. Therefore,
motion analysis has been a long time objective of computational vision, a low to
mid-level task.

The segmentation of an image sequence into regions with homogeneous mo-
tion is a challenging task in video processing [1,2,3,4,5,6] that can be used for
various purposes such as video-based surveillance and action recognition. In ad-
dition, it can be considered for video compression [1] since the motion model
and the corresponding supporting layers provide a compact representation of
the scene.

Motion/displacement is a well-defined measurement in the real world. On
the other hand, one can claim that recovering the corresponding quantity in the
image plane is a tedious task. Optical flow calculation [7,8,9,10,5] is equivalent
with the estimation of a motion displacement vector for each pixel of the image



plane that satisfies the visual constancy constraint. Such a task refers to an
ill-posed problem where the number of unknown variables exceeds the number
of constraints. The use of smoothness constraints [11] and other sophisticated
techniques were consider to address such an issue.

Parametric motion models are an alternative to dense optical flow estima-
tion [12,10,13,5]. The basic assumption of such a technique is that for an image
block, the 2D motion in the image plane can be modeled using a parametric
transformation. Such assumption is valid when the block refers to a projection
of 3D planar patch.

The objective of this work is to recover different planar surfaces, or motion
layers, and the motion parameters describing their apparent displacements. In
the literature, a K-mean clustering algorithm [1] on the motion estimates, or a
minimum description length (MDL) [3] were considered to determine the num-
ber of motion planes. In the latter case, the extraction is done according to
a maximum likelihood criterion, followed by optimization by the Expectation-
Maximization algorithm [14,3]. More recent approaches [15] refer to region grow-
ing techniques within combinatorial optimization [16].

In this paper, we present an iterative technique to estimate the motion pa-
rameters, the support of each layer as well as its visual properties. The latter
is used to overcome cases where motion information is not enough to estimate
the support. Our approach addresses in a very efficient fashion motion estima-
tion through a robust incremental technique, accounts for occlusions through
a forward/backward transformation and recover the layer support through a
MRF-based formulation that is optimized with the graph cut approach and the
α-expansion algorithm. To this end, motion residuals, visual appearance as well
as spatial and temporal smoothness constraints are considered.

The reminder of this paper is organized according to the following fashion. In
section 2, we briefly introduce the problem under consideration while in section
3, an iterative approach to recover the motion parameters is presented. The
extraction of the support regions of the different layers is part of section 4, while
in section 5 we discuss the implementation details of our approach and provide
experimental results and future directions.

2 Decomposition of Scenes in Motion Layers

Let us consider a static scene that consists of several planes, a moving ob-
server on the scene, and a sequence of 2D images acquired by the observer. Due
to the camera’s ego motion from one image to the next, one will be able to
observe motion on the static parts of the scene. Such motion (2D projection) de-
pends on the camera projection model and the depth level of the different planes
in the 3D scene. Here, we consider the projective camera model. The concept of
motion decomposition in layers [1] consists of separating the image domain into
n support regions Si, i ∈ [1, n] with their corresponding motion models (Ai, σi).
The i-th layer Li, i ∈ [1, n] is defined as the couple (Si,Ai).



The image domain Ω is partioned into n disjoint sets Si such that ∪ni=1Si =
Ω, Si ∩ Sj = ∅, i 6= j and neither the number of layers, not their support
regions, nor their motion parameters are known. In the reminder of this paper,
we will propose efficient methods to address the estimation of these unknown
variables.

In terms of motion, one can find in the literature parametric models of vari-
ous degrees of freedom like rigid, similarity, homographic, quadratic, etc. Affine
model is a reasonable compromise between low complexity and fairly good ap-
proximation of the non-complex motions of objects at about the same depth. It
consists of 6 degrees of freedom,

A(x, y) =
(
a0 · x+ a1 · y + a2

a3 · x+ a4 · y + a5

)
Such a model describes accurately (as detailed in [2]) the motion induced by a
planar object viewed from a moving camera. Furthermore, this model describes
well the 2D motion of the projection of an arbitrary 3D scene undergoing camera
rotations, zoom and small camera translations [17]. Likewise, when the overall
depth of the object is greater than the depth within the object, the model de-
scribes the image motion with a sub-pixel accuracy.

Motion estimation consists of recovering the parameters of this model such
that a correspondence between the projections of the same 3D patch within
two consecutive images is established. In principle, motion estimation refer to
an ill-posed problem since neither the projection model, neither the internal
parameters of the cameras are known and therefore constraints are to be deduced
from the images toward its estimation.

3 Recovering the Parameters of the Motion Models

The intensity preservation constraint (equivalent to the brightness constancy
assumption) [7] is often used to address motion estimation. The essence of this
constraint is that under the assumption of planar, Lambertian surfaces and with-
out global illumination changes, the appearance of the 2D projection of the same
3D patch will not change over time. Therefore if a motion vector dx = (dx, dy)
is assumed for the pixel x = (x, y), then the following condition is to be satisfied:

I(x; t) ≈ I(x + dx; t+ 1), (i)
I(x; t) ≈ I(x +A(x); t+ 1), (ii)

for the case of dense motion (i) and for the case of affine motion (ii). Given such
a condition, one can define the total motion residual according to:

E(A) =
∫
Ω

|I(x; t)− I(x +A(x); t+ 1)|2 dx (1)

Solving the inference problem, that is recovering the parameters of the affine
model through the lowest potential of the above function is a common practice in



computational vision. One can consider an iterative process using a well adopted
first order linear form of optical flow constraint:

A(x) · ∇I(x; t) +∇tI(x) = 0 (2)

where ∇I to the spatial gradient and ∇tI to the temporal gradient. One can
consider minimizing the corresponding cost function

E(A) =
∫
Ω

|A(x) · ∇I(x; t) + I(x; t+ 1)− I(x; t)|2 dx (3)

with standard linear methods that will fail though to capture large displacements
between two successive frames. To overcome this limitation, we consider an iter-
ative process as prescribed in [12]. To this end, one can consider an incremental
update of the motion parameters where at each step, given the current estimates
A, we seek to recover an improvement of the estimation ∆A such that the ac-
cumulation of existing parameters and the improvement minimizes the following
residual error:

E(∆A) =
∫
Ω

[I(x; t)− I(x +A(x); t+ 1)−∆A∇I(x +A(x); t+ 1)]2 dx (4)

that has a closed form solution. While one can claim that such an incremental
method will improve the estimation process, it will still suffer from the pres-
ence of outliers resulting an estimation bias. Robust estimation process like an
M-estimator can be used to overcome this limitation. Such a method assigns
weights we(x) to the constraints at the pixel level that are disproportional to
their residual error, thus rejecting the motion outliers. To this end, one should de-
fine the influence function, ψ(x) like for example the Tukey’s estimator [Fig. 1]:

ψ(x) =
{
x(Kσ

2 − x2)2 if |x| < Kσ

0 otherwise (5)

where Kσ characterizes the shape of the robust function. The weights we(x) are
then computed as following: we(x) = ψ(r(x))

r(x) ([12]).
One can now consider such a process for each layer in an independent fashion,

that consists of minimizing the following cost function

E(∆A1, ...,∆An) = (6)
n∑
k=1

∫
Ω

χSi
(x)ρ [I(x; t)− I(x +Ai(x); t+ 1)−∆Ai∇ I(x +Ai(x); t+ 1)] dx

where χSi is the characteristic function of the region Si. Once the support layers
are known, one can proceed to a straightforward estimation of the motion models.
Occlusions due to motion of the observer and the scene often arise in motion
and stereo reconstruction and must be taken into account. Such a case can be
accounted for through the joint estimation of the backward/forward motion;



Fig. 1. Tukey function ρ (on the left) and its derivative ψ (on the right)

Let (i) A1, ...,An be the motion models that create visual correspondences
between the images t and t+ 1 (such that I(x; t) = I((x +A(x); t+ 1)) and (ii)
A′

1, ...,A′
n the ones that create visual correspondences between the images t+ 1

and t (such that I(x; t + 1) = I((A′(x); t)). Then, we seek for a simultaneous
estimate of the improvements of both models forward/backward according to:

E(∆A1, ...,∆An,∆A′
1, ...,∆A′

n) = (7)
n∑
k=1

∫
Ω

χSi(x)ρ [I(x; t+ 1)− I(x +A′
i(x); t)−∆A′

i(x)∇ I(x +A′
i(x); t)]

+
n∑
k=1

∫
Ω

χSi
(x)ρ [I(x; t)− I(x +Ai(x); t+ 1)−∆Ai(x)∇ I(x +Ai(x); t+ 1)]

Under the assumption on the absence of occlusion, one can consider that for a
given pixel, both transformations capture its real motion and therefore, posing
x′ = x +A (x), the following condition will be satisfied:

x′ +A′ (x′) = x (8)

Such a concept is presented in [Fig. (2)]. The distance between the origins of
the pixel x and its position upon the application of forward/backward motion
models;

D(x) = ‖x′ +A′(x′)− x‖2 (9)

can be considered as an indicator on the presence of occlusions and used to
ponderate the influence function ψ defined in equation 5:

ψ(x) = ψ(x) · 1
1 +D(x)

(10)

Hence, occlusions will have low influence on the estimation process. However,
given the robust estimation process that was considered for any given partition of
the image, we will be able to recover affine motion models that, to some extent,
describe the observed motion. Therefore, we refer to the egg and the chicken
problem where it is crucial to have a consistent estimation of the support layers.



Fig. 2. Occlusion Detection: the Euclidean distance between the pixel origin and the
corresponding one after being transformed through the forward/backward motion is
used to detect occlusions.

4 Extraction of Support Layers

Let us consider a partition of the image into n segments

{S1, ...,Sn} : ∪ni=1Si = Ω, Si ∩ Sj = ∅, i 6= j

The problem of extracting support within the layer decomposition process con-
sists of selecting for each pixel of Ω, the label among these n that dictates the
most appropriate motion model for this image patch. One can see such a task in
the form of a labeling problem, where one should assign to the pixel x a label
ω(x) ∈ [1, n] according to a certain criterion. Within our approach we adopt
motion and appearance terms to address such a labeling process while imposing
certain spatial and temporal smoothness constraints on the label space.

4.1 Motion Criterion

Let us consider the distribution of the residual errors within a layer. Under
the assumption of proper motion estimation as well as correct classification, one
can consider that residual errors are due to the presence of noise that in the
most general case white.

Therefore, the motion residual ri(x) = |I(x, t)− I(x +Ai(x), t+ 1)| for the
layer Li obeys a normal law G(µi, σi). Consequently, the probability for given a
pixel within the region Li to actually being part of this region according to the
observed residual is:

p (ri(x)|Ai, σi) =
1√

2πσi
exp

(
−ri2(x)

2σi2

)
(11)

where σi is the standard deviation computed during the motion estimation for
each layer support. We consider the following robust estimator which tolerates



50% of outliers efficiently:

σi = 1.4826
{

median
x∈Si

|ri(x)|
}

(12)

One can assume independence on the distribution of the residual errors within
the pixels of a support layer Si and given the expected distribution, would like
to maximize the conditional density,

pi(ri(x)|Ai, σi) = p

( ⋂
x∈Si

{ri(x)|Ai, σi}

)
=
∏
x∈Si

p(ri(x)|Ai, σi) (13)

Furthermore, independence on the residual errors is assumed between the differ-
ent support layers. Then, using the Bayes rule, one can consider the posterior for
the labeling process ω according to the motion characteristics in the following
fashion:

p(ri(x)|Ai, σi, ω) =
∏
x∈Ω

pω(x)(rω(x)(x)|Aω(x), σω(x)) (14)

where the assumption that all labelings are equal probable was made. Maxi-
mizing the posterior is equivalent with minimizing the negative log-likelihood of
such a density:

Emotion(ω) = −
∫
Ω

log
[
pω(x)

(
rω(x)(x)|Aω(x), σω(x)

) ]
dx

=
∫
Ω

(
log
[
σω(x)

]
+
rω(x)

2(x)
2σω(x)

2

)
dx (15)

The lowest potential of this objective function will classify image pixels according
to their residual errors. Such classification will reflect the maximum posterior ac-
cording to the expected distribution of the residual error for each layer. However,
motion estimates are reliable when image structure is present and consequently
motion-based classification may be ambiguous in some cases, like in the lack of
texture.

4.2 Visual Appearance Criterion

We overcome this limitation through the introduction of a visual grouping
constraint, where a classification according to the observed intensities is to be
considered. To this end, we consider a flexible parametric density function -
Gaussian mixture - to describe the visual properties of each layer;

pi(I) =
mi∑
k=1

π{i,k} p{i,k}
(
I|µ{i,k}, Σ{i,k}

)
(16)



where pi() is the colour distribution of the i-th layer that consists of mi Gaussian
components with π{i,k} ∈ [0, 1] being the prior of the component k (or its propor-
tion in the mixture) and (µ{i,k}, Σ{i,k}) the mean and the covariance matrix of
this component. These parameters are estimated from an observed distribution
through an EM algorithm [18]. To efficiently determine the number of Gaussian
components per mixture, a Minimum Description Length (MDL) criterion is con-
sidered. Such a colour distribution has been chosen because it provides a simple
and efficient way to learn the visual characteristics of each layer while not being
constraint to be a unimodal. Therefore even regions with very different colour
characteristics that belong to the same plane will be accounted for. Then, the
posterior segmentation probability can be considered as the most efficient metric
to recover the separation of the image domain into regions of support for the
different layers according to their expected appearance properties. Similar to the
case of motion, we consider that layers as well as pixels within regions are inde-
pendent and all possible labelings are equally probable, leading to the following
objective function

Evisual(ω) = −
∫
Ω

log
[
pω(x) (I(x))

]
dx (17)

=
∫
Ω

log

(mω()∑
k=1

π{ω(),k} p{ω(),k}
(
I()|µ{ω(),k}, Σ{ω(),k}

))
dx

where x were omitted from the notation due to the lack of space. One can
seek the lowest potential of these two terms weighted according to some con-
stant to recover the most appropriate image partition in terms of support layers.
Such a method will be able to determine support through an independent de-
cision process according to the similarity between the observed image and the
expected properties in terms of appearance and residual error. Such an inde-
pendent process will form several discontinuities that will be quite disrupting
to the human eye and will violate the condition that images are assumed to be
consistent at a local scale.

4.3 Spatial Smoothness

Such a limitation is often addressed using local smoothness constraints on
the label domain, that consists of saying that neighborhood pixels should belong
to the same layer;

Esmooth(ω) =
∫
Ω

[∫
N (x)

V(ω(x), ω(u))du

]
dx (18)

where N (x) is the local neighborhood of x. Here, the function V has the following
form (named Pott’s model):

V(ω(x), ω(u)) =
{

+αdiff , ω(x) 6= ω(u)
0 , ω(x) = ω(u) (19)



with αdiff > 0 and the local neighborhood consists of pixels that are 4- or 8-
connected. Such a term will penalize discontinuities in the support space that
are also discontinuities in the motion space. While such an assumption seems
natural, it is not valid when considering pixels that refer to real discontinuities of
the observed scene. In that case, we should tolerate label discontinuities, which
is satisfied through a multiplicative factor applied to the smoothness potential
that is inversely proportional to the image gradient [19], or:

Vg(ω(x), ω(u)) = V(ω(x), ω(u)) exp

(
−‖I(x)− I(u)‖2

2σ2

)
(20)

Such a term will produce smoothness on the label space in rather uniform re-
gions while it will relax the constraint in areas where physical discontinuities are
present.

One can further explore smoothness in the temporal domain. Given that we
are treating sequences of images observing the same scene, the assumption of
smoothness within the labeling in the temporal space is valid.

4.4 Temporal Smoothness

Let us consider a sequence of images I(; 1), I(; 2), ..., I(; τ), as well as a se-
quence of labelings ω(; 1), ω(; 2), ..., ω(; τ). We assume that we are currently treat-
ing the image t ∈ [1, τ ] and the motion models A1, ...,At−1 have correctly been
estimated. Then, we define a smoothness function on the temporal space that
takes into account the motion models and the support layers of the previous
frame:

Vt(ω(x; t)) =
{

+αdiff , ω(x; t) 6= ω(A−1
t−1(u); t− 1)

0 , ω(x; t) = ω(A−1
t−1(u); t− 1)

(21)

whereA−1
t−1 is the inverse motion model that establishes correspondences between

the frames I(; t) and I(; t − 1). One can now introduce an additional temporal
smoothness term:

Etsmooth(ω) =
∫
Ω

Vt(ω(x))dx (22)

where particular attention is to be paid to address the presence of new objects
in the scene. Motion residual errors, visual consistency and spatial and temporal
smoothness can now be considered to recover the optimal partition of the image
given the expected characteristics of each layer, or:

E(ω) = Emotion(ω) + αEvisual(ω) + βEsmooth(ω) + γEtsmooth(ω) (23)

The lowest -sub-optimal- potential of the discrete form of the above function
can be determined using several techniques of various complexity like the iter-
ated conditional modes [20], the highest confidence first [21], the mean field and
simulated annealing [22] and the min-cut max flow approach [23]. Because of its
efficiency, the graph-cut framework is retained to recover the optimal solution
on the label assignement problem [23].



5 Graph-Cuts and Implementation

The graph G = 〈V, E〉 is a set of nodes V and directed edges E connecting
them. Two special terminal nodes are present: the source s and the sink t. Each
edge connecting nodes p and q is assigned a weight w(p, q). We break all edges in
two groups: n-links and t-links. A n-link is an edge connecting two non-terminal
nodes. A t-link connects a non-terminal node with a terminal node, s or t. The
cut C is a partitioning of the nodes of the graph into two disjoint subsets S et
T such that the source s ∈ S and the sink t ∈ T . Its cost c(S, T ) is the sum
of the weights of all edges (p, q) such that p ∈ S and q ∈ T . The minimum cut
is the cut with minimal cost and can be determined in polynomial time with a
max-flow extraction algorithm.

For the energy (23), finding directly the optimal solution is not feasible in
practical. Indeed, the problem of multi-labeling is NP-hard and no polynomial
method is available to obtain the optimal solution. However, the α-expansion al-
gorithm [23] gives fastly a good approximation of this energy which is guaranteed
to be within a factor of 2 from the optimal one. To minimize the energy (23),
we proceed as follows: we start with an initial layer assignments, obtained at the
previous iteration. Then, for each α ∈ [1, n], we improve this energy by modi-
fying some labelings to the label α via an α-expansion move which we describe
here: considering a binary graph G, each pixel x ∈ Ω is representd by a non-
terminal node p connected to the source with a weight ts,p and to the sink with
a weight tp,t. Each pair of neighbouring nodes (p, q) - if their layer assignments
are different - are linked through an intermediate node a with weights ts,a, tp,a
and ta,q respectively. For t-link weights, we define the data cost function Dp(ω)
as Dp(ω) = Emotion(ω) + αEvisual(ω) + γEtsmooth(ω). The table 1 summarizes
all the weights associated to the n- and t-links. The minimal cut gives the new
layer assignments which is optimal considering label α against all the others.

link weight for

ts,p Dp(ω(x)) ω(x) 6= α

ts,p ∞ ω(x) = α

tp,t Dp(α) ∀ ω(x)

ts,a V(ω(x), ω(u)) ω(x) 6= ω(u)

tp,a V(ω(x), α) ω(x) 6= ω(u)

ta,q V(α, ω(u)) ω(x) 6= ω(u)

tp,q V(ω(x), α) ω(x) = ω(u)

Table 1. Weights associated to each nodes of the α-expansion graph.



Fig. 3. Results on calendar sequence (one frame on four is considered). Each column
represent a frame: frames 0,12,24,36 are represented here. First row, original sequence;
second row, the layers extracted ; third row, superposition of layers boundaries with
original sequence.

5.1 Implementation details

Once appropriate modules have been presented to address each sub-task,
now we can proceed to the definition of the overall concept. In the first image,
a random sampling into N segments is considered. These segments are used as
support layers, and the motion as well as visual properties are obtained. Such
measures are then introduced to the α-expansion algorithm that will provide a
new image partition with different visual and motion properties. The process is
repeated until convergence. Initialization of the layer support from one image
to the next is done through the motion models and the same process as the
one of the first frame is considered. One critical step is the estimation of the
number of layers. Toward this end, we use two techniques sequentially. The first
one reduces the number of layers and the second one detects new layers (or new
objects) which appear in the video.

5.2 On the number of layers

We merge two layers if their motions are similar. As motion parameters does
not define uniquely the motion over all the layer support, rather than considering
them directly, we consider the optical flow generated by the two motion models.
Hence, using the notation introduced in section 3, the motion similarity criterion
rij between two layers i and j is computed as follows:



rij =
1
|Si|

∫
Ω

(Ai(x)−Aj(x))2χSi
(x)dx

+
1
|Sj |

∫
Ω

(Ai(x)−Aj(x))2χSj
(x)dx

where |Si| =
∫
Ω
χSi

(x)dx (similarly for |Sj |). If rij drops down under a certain
threshold, the two layers i and j are merged together. Furthermore, layers with
too small support (and so giving bad motion estimation) or with too important
variance (due to too many outliers in the support) are deleted.

New objects which appear must be detected and classified in new layers.
Toward this end, we proceed as follows: first, warp residual is computed for the
whole frame, giving a residual map. We apply a binary threshold T to this map.
All pixels whose residual is higher than T are extracted and pixels which do not
belong to a large connected region (the minimal size Tmin of the region is defined
empirically) are ignored. These connected regions which contain the remaining
pixels are considered as new layer support.

6 Discussion and conclusion

6.1 Experimental results

The validation was also done on two classical sequences (calendar sequence
Fig. 3 and flowers sequence Fig. 4) to permit comparisons with previous meth-
ods. One can see that the algorithm extracts well the different layers for both
sequences. In Fig. 3, if the calendar and the train are well segmented, the ball is
over-segmented (due to lack of texture and similar colors with the background)
and is classified in the same layer than the train.

For the flowers sequence, the first frame is over-segmented but the number
of layers is then well determined. The background is well distinguished from the
middle-plane (the house and the flowers). Colors criterion permits to overcome
ambiguities in the sky due to lack of texture. However, branches are not well
classified with the good layer. Indeed, due to the small distance between the tree
and the camera, as branches do not belong to the same 3D plane, their motion
can not be represented with the same affine model than the one of the tree.

6.2 Conclusion

In this paper, a method to robust motion estimation and layered reconstruc-
tion of scene according to parametric motion models is presented. Our method
performs robust motion estimation while being able to account for occlusions
through a forward/backward iterative estimation process. Furthermore, within
an forward/backward schema, our approach groups the image domain into lay-
ers according to motion, appearance and spatial and temporal smoothness con-
straints. Promising experimental results demonstrate the potential of the pro-
posed method as shown in [Fig. 3 and 4].



Computational complexity is the most important limitation of the proposed
approach. In particular the motion estimation step is time consuming and can
lead to sub-optimal results. Hardware implementation of the method in Graphics
Processing Units is under consideration. The sequential nature of the proposed
approach is also a limitation. To this end, one can consider a combinatorial
approach where the parameters of the affine models are also recovered through
an α-expansion algorithm.
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Fig. 4. Results on flowers sequence. Each column represent a frame: frames 0,3,6,...,18
are represented here. First row, original sequence; second row, the layers extracted
; third row, superposition of layers boundaries with original sequence. One can note
that layers become more accurate and stay constant throughout the sequence. Main
parameters: α = 0.25, β = 10, γ = 1, Tmin = 0.2.


