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ABSTRACT
Optical imaging is an efficient mean to measure biological signal.
However, it can suffer from low spatial and temporal resolution
while animal deformable displacements could also degrade sig-
nificantly the localization of the measurements. In this paper, we
propose a novel approach to perform fusion of cinematic flow and
optical imaging towards enhancement of the biological signal. To
this end, fusion is reformulated as a population (all vs. all) reg-
istration problem where the two (being spatially aligned) signals
are registered in time using the same deformation field. Implicit
silhouette and landmark matching are considered for the cinematic
images and are combined with global statistical congealing-type
measurements of the optical one. The problem is reformulated us-
ing a discrete MRF, where optical imaging costs are expressed in
singleton (global) potentials, while smoothness constraints as well
as cinematic measurements through pair-wise potentials. Promising
experimental results demonstrate the potentials of our approach.

Index Terms— Biomedical optical imaging, bioluminescence,
group-wise registration, MRF, discrete optimization

1. INTRODUCTION

Non-invasive visible light imaging is now a widely accepted tech-
nology allowing researchers to follow many biological processes in
healthy and diseased animal models [1]. The detection of the light
emitted by a probe provides functional information and localization
of the processes to be studied. One limitation of this modality, is the
impact of the anesthetic agents used for animal handling, specially in
functionals experiments [2, 3]. Optical imaging devices are now able
to image these processes in freely moving animals [4]. However, lo-
calization of the signal can be degraded during the monitoring period
(due to motion). In some applications, the signal is too weak to be
significant, so measurements are accumulated and being averaged
on several frames. Therefore, substantial movements during a time
window T blur the data and degrade the localization of the signal
(Fig. 1). Motion compensation, throughout the acquisition, can ad-
dress the above mentioned limitation.

Prior work trying to tackle this problem includes both group-
wise and pair-wise registration techniques. In [5] a variational
method recovering the deformations between consecutive frames
based on silhouette and landmark information is proposed. A group-
wise approach that minimizes an objective function based on the
minimum description length principle is introduced in [6]. This

This work was supported by ANRT (grant 987/2006), Biospace Lab and
EMIL (European Molecular Imaging Laboratories) network. The authors
thank O. Levrey (Biospace Lab) and E. Roncali for their assistance. More-
over, the authors would like to acknowledge the contribution of R. Boisgard
(CEA-LIME and INSERM U803, Paris, France) for in vivo experiments.

Fig. 1. Images of anesthetized and freely moving animal for a time
window of 1 s. On the right motion compensation result.

method is based on points of interest and their associate texture de-
scriptors, and is restricted to the body. Both techniques, despite their
differences, consider only information extracted from the cinematic
video.

The aim of this paper is to improve the localization of the bio-
luminescent (BL) signal by incorporating information not only from
the cinematic flow but also from the optical imaging data. The ap-
proach followed is the one of the group-wise registration where a
batch of multi-channel images is considered. In this context, stan-
dard pixel-based similarity measurements are considered between
the frames of the video sequence, while a stack-wise statistical com-
pactness criterion is considered for the case of BL signal. Free Form
Deformations (FFD) are used, enabling for smooth and invertible
deformation fields under specific conditions. The group-wise reg-
istration problem is formulated as a Markov Random Field (MRF)
permitting the use of efficient discrete optimization techniques.

2. METHODS

The group-wise registration is based on an approach proposed in
[7] and is now applied to a population of multi-channel images
{I1, · · · , In}. The multi-channel image Ii = {Vi, Oi}, consists
of the information obtained by the video acquisition of the moving
object Vi as well as the biological data Oi that are simultaneously
recorded. The goal of our approach is to bring the population of the
images to the same pose, through mutual deformation, by taking ad-
vantage of the information provided by both modalities. In order to
estimate the deformation field T = {T1, · · · , Tn} that would bring
the population to a common domain, the problem will be casted as
an energy minimization one.

2.1. Deformation Model

In order to decrease the dimensionality of the deformation model,
cubic B-splines FFD are considered. The displacement field D(x)
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is now given as a weighted average of the displacements applied to
the nodes of the deformation grid. In a general way, it can be com-
puted as D(x) =

∑
p∈G η(|x − p|)dp, where η(·) is a weighting

function that measures the contribution of each control point to the
displacement field. In this particular case,

D(x) =

3∑
r=0

3∑
c=0

Br(u)Bc(v)dpu0+r,v0+c (1)

where u0 = �x/δx�, v0 = �y/δy�, u = x/δx − �x/δx� and v =
yi/δy−�yi/δy�. Br represents the rth basis function of the B-spline

and δx = Sx
K−1

, δy =
Sy

L−1
, (Sx, Sy are the dimensions of the image

along x- and y-axis respectively), denote the control point spacing.
This deformation model allows for an explicit way to impose the
diffeomorphism of the deformation. It suffices that the maximum
displacement is constrained to be 0.4 times the distance between the
nodes of the grid [8].

As the goal is to deform the population of images towards
the common domain at the same time, a deformation grid G =
{Gi, · · · , Gn}, where each Gi : [1, K] × [1, L] is superimposed
onto each image Ii (the same grid is superimposed onto both com-
ponents of the image), is considered. In other words, the goal is
to deform the grids simultaneously (with a 2D displacement vec-
tor dpk

i
for each control point k belonging to grid Gi) so that the

images are coregistered. In this case, the transformation of a pixel
xi ∈ Ωi, where Ωi is the domain of image Ii can be written as
Ti(xi) = xi + Di(xi). The dimensionality of the parameter space
and the non-convexity of the objective function makes challenging
the estimation of the optimal deformation.

2.2. Discrete Population Fusion

Discrete optimization methods are quite popular in medical imaging
and computer vision. This is due to their ability to provide guar-
antees on the quality of the obtained solution and their computa-
tional performance. Furthermore, they are modular with respect to
the model (parameters to be estimated) and the model-to-data asso-
ciation (relation between a set of parameters and the observations).
Therefore, such a framework is a natural approach to deformable
population fusion as suggested in [7, 9]

Given the chosen deformation model, what should be done is to
quantize the displacements the grid nodes can perform by sampling
along the principal horizontal and vertical directions. The choice
of labels entails a compromise between the quality of the solution
and the computational effort. In order to keep the number of labels
reasonable, the optimization will be performed in an iterative way
introducing a notion of time t.

Let us consider a discrete set of labels L = {l1, ..., lq} be-
ing associated with a quantized version of the deformation field
{dl1 , · · · ,dlq}. Then, by assigning a label lp to a grid node p
the node is displaced by the corresponding vector dlp . Thus, de-
formable population fusion consists of associating a label per node,
such that by applying the resulting displacement field the images are
aligned. The problem can be now formed as a multi-labeling one.

Mathematically, the problem can be formulated with the use of
MRF. Typically, such a model can be represented as a graph G where
the set of nodes represents the variables and the set of the edges
represents the interaction between the variables. It can be written as:

EMRF (l) =
∑
p∈G

Vp(lp) +
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (2)

where N (p) represents the neighboring nodes to the node p.

In our framework the previous energy can be rewritten as:

EMRF (l) =α
n∑
i

∑
pk

i ∈Gi

Vpk
i
(lpk

i
)

β

n∑
i

n−1∑
j=i+1

∑
pk

i ∈Gi

∑
qk

j ∈Gj

Vpk
i qk

j
(lpk

i
, lqk

j
)

γ

n∑
i

∑
pλ

i ∈Gi

∑
q

μ
i ∈N (pλ

i )

Vpλ
i q

μ
i
(lpλ

i
, lqμ

i
)

. (3)

2.3. MRF For Optical And Cinematic Video Fusion

The MRF-model consists of singleton and pair-wise terms (Eq. 3).
The first term (singleton) accumulates pixel-based measurements
across the co-registered image stack. The second term (referred as
inter pair-wise potentials) imposes the similarity between pairs of
images while the third one (referred as intra pair-wise potentials) the
smoothness of the deformation.

Bioluminescence Statistical Compactness: The idea is that as the
images are getting aligned, the distribution of the BL signal values
that correspond to respective places along the stack of images will
become more and more compact. Here, standard deviation is used
to measure the compactness of the distribution. Ideally, this measure
should depend on deformations applied to all images, which would
imply the use of high-order cliques. Though it may be possible, the
use of more complex node interactions will decrease the efficiency
of the model. Hence, an approximation will be made by considering
that for a given node pi ∈ Gi, the rest of the images will not move
during the current iteration.

Vpk
i
(lpk

i
) =

∫
· · ·

∫
Ω1∪,··· ,∪Ωn

η−1
s (xi,p

k
i )ψ(T t−1

1 (x1), · · · ,

T t
i (xi), · · · , T t−1

n (xn))ST D(O1(T
t−1
1 (x1), · · · , Oi(T

t
i (xi), · · · ,

On(T t−1
n (xn))dx1 · · · dxn.

(4)

ψ is a Dirac-type function whose role is to identify which pix-
els have been mapped to corresponding positions in the common
domain. It is defined as follows:

∏n
j=1 δ(|T t

i (xi) − T t−1
j (xj)|).

The weighting function η−1 computes the influence of the image
point xi to the control points pi. For example, if we consider the
case of closest-neighbor interpolation, then a given pixel in the im-
age will only contribute to the closest control point with a coeffi-
cient equal to one. The inverse function takes the following form:

η−1
s (xi,p

k
i ) =

η(|xi−pk
i |)∫

Ωi
η(|yi−pk

i |)dyi
. The previous relation gives the

cost of deforming image Ii through the application of a label lpk
i

to

the node pk
i , which belongs to Gi and is situated at the position k,

by taking into account only the optical imaging information.

Similarity Between Pairs Of Video Frames: The second term
measures the similarity between all pairs of the video frames after
having been deformed through the application of a pair of labels. It
can be defined as:

Vpk
i qk

j
(lpk

i
,lqk

j
) ≈

∫
Ωi∪Ωj

δ(Ti(xi), T (xj))

η−1
p (xi,pi,xj ,qj)ρ(Ti(xi), Tj(xj))dxidxj

(5)
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where ρ is an appropriately defined function that provides for a dis-
similarity measure and will be detailed in the continuation. The role
of the δ(Ti(xi), T (xj)) = δ(|Ti(xi) − Tj(xj)|) Dirac function is
to determine which pixels xi ∈ Ωi and xj ∈ Ωj correspond to the
same pixel in the domain where the comparison takes place. The
inverse function takes the following form:

η−1
p (xi,pi,xj ,qj) = η−1

p (|xi − pi|, |xj − qj |)

=
η(|xi − pi|)η(|xj − qj |)∫

Ωi∪Ωj
δ(Ti(yi), Tj(yj))η(|yi − pi|)η(|yj − qj |)dyidyj

.

(6)

Providing a similarity metric between the video frames is not ev-
ident due to the lack of texture and the important occlusions and
dis-occlusions created by the fixed sensor view-point. To overcome
these limitations, we defined ρ from silhouette and landmarks repre-
sentations in the domain Ωi ∪ Ωj .

In order to design a robust criterion, we embed the 2D silhou-
ettes, Si and Sj in a higher dimensional space using the Euclidean
distance transform [10]. The distance transform of the shape S is
denoted φS .

φS(x) =

{
−D(x,S), x ∈ S

D(x, Ω − S), x ∈ Ω − S (7)

where D(x,S) refers to the minimum distance between the point
x and the shape S. This representation has the nice property to be
invariant to translation.

To increase the ability to measure dissimilarity, we can extend
the objective function within a band defined by isosurfaces of φS .
Therefore, ρS is proposed as a robust quadratic similarity criterion:

ρS(Ti(xi), Tj(xj)) =

wμ(φS(Ti(xi)))
(
φS(Ti(xi)) − φS(Tj(xj))

)2

,
(8)

where wμ is a smooth Dirac function weighting positively the iso-
surfaces close to the zero level-set. The use of silhouettes to align
the successive positions of the mouse would provide meaningful
geometric correspondences between their shapes. However, their
anatomical significance as well as the validity of the transforma-
tion within the silhouette are questionable. The use of landmarks
can overcome this limitation and provide additionally constraints to
align the entire structure.

These constraints are obtained by finding correspondences be-
tween points from the two shapes. Let us consider that m-landmarks
(λi

1, ..., λ
i
m) can be extracted from Vi (drawn onto the mouse sur-

face), and n-landmarks (λj
1, ..., λ

j
n) from Vj . In our case, establish-

ing correspondences is not straightforward given that the landmarks
visibility depends heavily on the pose of the mouse and the patterns
are very similar. Therefore to establish robust correspondences, we
embedded the landmark information into an implicit criterion:

φL(x; i) = mink∈[1,m]D(x, λi
k) (9)

Then, alignment of shapes can be achieved through the alignment
of their implicit representations within the mouse:

ρL(Ti(xi), Tj(xj)) =

wν(φS(Ti(xi))
(
φL(Ti(xi)) − φL(Tj(xj))

)2

,
(10)

with wν is a smooth Heaviside function accounting for landmark
correspondences only within the mouse. The use of landmarks will

improve the performance of the method with respect to the alignment
of the interior parts of the mouse. The above mentioned criteria can
be integrated in ρ which unifies silhouette and landmark constraints:
ρ = ρS + κρL.

Smoothness Deformation Prior: The unary and the inter pair-
wise potentials constrain the deformation to be consistent with both
the visual support provided by the cinematic flow and the BL signal
measurements. Thus, it is possible to localize the BL signal source
with high accuracy. What is left to detail is the pair-wise potentials
whose goal is to impose smoothness to the deformation fields applied
to each image Ii. This can be achieved by penalizing the difference
between the value of the labels that neighboring nodes can take. A
simple distance function can be defined by computing the magnitude
of vector differences:

Vpiqi(l
k
pi

, lξqi
) = |dlkpi − d

lξqi | (11)

where d
lkpi is actually the displacement that corresponds to assign-

ing a label lk to the node pi ∈ Gi.

3. EXPERIMENTAL VALIDATION

Our experiments were realized with an innovative device allowing
to record simultaneously Oi and Vi at 45 fps. The scene video is
acquired under near IR lighting and BL signal is recorded by an in-
tensified CCD (Photon Imager, Biospace Lab) [4]. To validate our
approach, we compare it with previous methods focusing on the mo-
tion correction of the BL signal. The evaluation is based on the BL
signal because the aim is to provide an accurate and robust method
for cinematic analysis in optical imaging. The method was tested on
3 acquisitions of 1300 frames. The acquisitions were subdivided in
successive populations of 15 multi-channel images. Afterwards, the
biological data were filtered with different time windows T. For all
experiments, α, β and γ (Eq. 3) were set equal to 2, 1 and 18 respec-
tively. The weights were experimentally optimized for the sequence
described in Sec. 3.2 and the case α = 0 was also considered.

3.1. Group-wise Registration Evaluation

First, to visually assess the performance of our method, the result on
a stack of images is presented in Fig. 2. In this figure, we present the
mean image of the stack as well as the stack-wise sum of the biolog-
ical data before and after registration. The fact that the mean image
is far more sharp than the one before registration implies the success
of the method on all the parts of the body contrary to [6]. Moreover
the biological data seem well localized, without added noise.

Fig. 2. Group-wise registration results: on the left the mean of the
population, on the right sum of the BL signal (respectively before
and after registration).

3.2. Impact On Signal Dispersion

We used a test sequence of 100 images in which we drew, on each
frame a spot as a ground truth. We computed a statistical criteria
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Fig. 3. (a) presents localization improvement for temporal fusions 0.5 s (black) and 1 s (gray). Dashed and bold lines indicate respectively raw
and corrected data. (b) and (c) show the decrease of ROI miscounting and c̄ for 3 sequences. In (b) bars indicate the mean of ROI miscounting
criterion. (d) and (e) ; (f) and (g) show pair of images enhanced by our algorithm.

DT (t) to measure the signal dispersion for a time window T in frame
t. Along this particular sequence, we have reduced the DT (t) by at
least 85% which is better than the pair-wise method introduced in [5]
(Table 1). Fig. 3(a) shows results throughout l00 frames. We used
synthetic data to compare the intrinsic performances because bio-
logical signal changes strongly with respect to the emitting surface
normal during acquisition.

D̄T 0.25 s 0.35 s 0.5 s 0.75 s 1 s

raw (mm) 1.51 1.98 2.47 3.37 3.99
corrected pw (mm) 0.3 0.32 0.37 0.44 0.48
corrected gw (mm) 0.24 0.24 0.26 0.28 0.29

Table 1. Mean distance as function of T. Comparison between pair-
wise and group-wise methods (pw and gw respectively).

3.3. Impact On Cinematic Analysis

We study now the biological signal throughout a sequence through
visual assessment and cinematic analysis. Fig. 3 show two examples
of our results with one and two small luminescent sources embedded
on the mouse and temporal fusion of 1 s. We notice that the localiza-
tion and the meaning of the biological data have been improved by
our method as expected. To check this point throughout a sequence,
we automatically compute for each frame regions of interest (ROI).
We compare for each frame this number to the number of embedded
sources to obtain the ROI miscounting. Results are summed up in the
figure 3(b) for 3 sequences. As expected ROI miscounting decrease
strongly with our method and ROI detection is better than with the
pair-wise method. We also determine the circularity c of the signal
before and after registration as in [5]. In Fig. 3(c) the evolution of c̄
between the group-wise and the pair-wise approach is compared.

4. CONCLUSIONS

In this paper, we have proposed a novel approach to enhance the
BL signal by formulating the problem with the use of MRF theory.

To the best of our knowledge, we are the first to consider together
multi-channel images provided by different modalities. The fusion
of different type of information enables us to further refine signal
localization. We studied the impact of our method on cinematic ac-
quisitions in optical imaging with temporal resolution of 1 s. This
novel modality enables a quantification of a biological process even
in awake animal. Our method compares favorably to the state of art.
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